Extensions 1→N→G→Q→1 with N=C98 and Q=C22

Direct product G=N×Q with N=C98 and Q=C22
dρLabelID
C22×C98392C2^2xC98392,13

Semidirect products G=N:Q with N=C98 and Q=C22
extensionφ:Q→Aut NdρLabelID
C98⋊C22 = C22×D49φ: C22/C2C2 ⊆ Aut C98196C98:C2^2392,12

Non-split extensions G=N.Q with N=C98 and Q=C22
extensionφ:Q→Aut NdρLabelID
C98.1C22 = Dic98φ: C22/C2C2 ⊆ Aut C983922-C98.1C2^2392,3
C98.2C22 = C4×D49φ: C22/C2C2 ⊆ Aut C981962C98.2C2^2392,4
C98.3C22 = D196φ: C22/C2C2 ⊆ Aut C981962+C98.3C2^2392,5
C98.4C22 = C2×Dic49φ: C22/C2C2 ⊆ Aut C98392C98.4C2^2392,6
C98.5C22 = C49⋊D4φ: C22/C2C2 ⊆ Aut C981962C98.5C2^2392,7
C98.6C22 = D4×C49central extension (φ=1)1962C98.6C2^2392,9
C98.7C22 = Q8×C49central extension (φ=1)3922C98.7C2^2392,10

׿
×
𝔽